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Analytical results for random walks in the presence of disorder and traps
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In this paper, we study the dynamics of a random walker diffusing on a disordered one-dimensional lattice
with random trappings. The distribution of escape probabilities is computed exactly for any strength of the
disorder. These probabilities do not display any multifractal properties, contrary to previous numerical claims.
The explanation for this apparent multifractal behavior is given, and our conclusions are supported by numeri-
cal calculations. These exact results are exploited to compute the large time asymptotics of the survival
probability (or the density which is found to decay as expCt“éin?3(t)]. An exact lower bound for the
density is found to decay in a similar wgy51063-651X99)07608-4
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[. INTRODUCTION [8] where a particle diffuses in a randadrownian poten-
tial, the diffusion is dramatically suppressed, the particle be-

. . ; : ing effectively trapped in deeper and deeper valleys of the
B e et el LNl 3 tme G0es n.n th present paper,we suy e
erature within the past two decadds-5]. The simplest sys- dynamics of particles diffusing in a symmetric or nonsym-

; DAL : - ' metric disorder, in the presence of a random finite trapping

tem is that of diffusing particles in the presence of perfect robability at each site
static traps[1-4]. This problem(which we will call the P '
Donsker-Varadhan problenhas been solved using very dif-

The dynamics of the survival probability of particles dif-

ferent technics. The main result is that the density does not Il. MODEL AND KNOWN RESULTS
decay exponentiallyas a simple mean-field argument would . , ) ) ) )
predicy, but as Consider a particle moving on a one-dimensional lattice

with random barriergor hopping probabilitiesand random
)~ — Cy(—In(1—c))2d+2)di(d+2)y 1 trapping probabilities. More precisely, a particle at siteas
n(t)~exi ~Cq(~In(1=c) ] @) a probabilityw; ;. ;<3 (respectivelyw;; ;<3) to hop on

. . . . . . _site i+1 (respectivelyi—1), and a probability (% y)(1
where ¢ is the trapping site density. The physical inter W, ;_1—W; +1) to disappealy<1). With residual prob-

pretation ind dimensions is that the process is dominated b bility v(1— W o 1 W - it iust st ité. The hop-
particles standing in very large trap-free regions of linear* 2"y 4 Wii-1 Wi,i+1), It just stays on sité. € hop
sizeL [these regions have a probability of order exp() pjng probabilities can pe taken to be symmetrwiyi(fl
for small c]. In such a region, the density decays as_W”lvi) or nonsymmetric, anpl will be chosen according to
exp(—t/L?). A saddle-point argument then leads to the resultthe typical probability distribution
of Eq. (1), with the relevant regions being of typical sike
~ (t/c)Y@+2) gt timet. p(w)=21"B(1—B)w Ao(w)6(1/2—w), 3

In another class of mode[$], the traps are allowed to
move. When these traps undergo free diffusion, the de”Si%here/kl measures the quenched disorder strength.

of particles decays as The casey=1 (no trapping has been extensively studied
[6—8]. In the symmetric casgb,7] one observes anomalous
n(t)~exq — Cqct??] (2)  diffusion, (x?(t)) ~t2*, with v depending continuously of.
The return probabilityPg(t) =(p; i(t)), which is the prob-
for d<2, and decays exponentially fat>2. This result ability of being at sitei at timet having started at site
holds in the case of static or diffusing particl&s. decays a®(t)~t~ 92, whered, is the spectral dimension
It would be interesting to introduce the effects of hopping[6,7]. The Sinai mode]8] describes the generic nonsymmet-
disorder on the trapping process. Even without trappingric case, and displays logarithmically slow diffusion and
quenched disorder in the particle hopping probabilities isother peculiar properties.
known to have very important effects on the diffusion and In the presence of trappingd<y<1), the problem has
first return propertie$6—8J. In the case of symmetric hop- been studied essentially by numerical megh4q]. In addi-
ping probabilities ; ;+1=w;.1;) [6,7], anomalous diffu- tion to Pg(t), one can define the normalized return probabil-
sion is observed, with an exponent depending on the propeity P(t) as
ties of the disorder. In the generic nonsymmetric cease
Ref.[7] for a more precise criterignas in the Sinai model

ii(t
po= | 20\ @

; pi j(t)
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Note that in order to keep the notations simple, it is underteader more interested in the physical consequences of these
stood that(---) involves an average over the disordard results could skip these technicalities and take the qualitative
the considered site The proper way of definingx?(t)) is  arguments given in the beginning of these sections for

now granted.
> pi j(t)(j—i)z ll. ESCAPE PROBABILITY DISTRIBUTION:
(K2()) = o ®) NONSYMMETRIC CASE
E pi () A. Preliminaries
=~ P

Let us show thak;,; can be simply evaluated from the

only taking into account surviving particles. With these newknowledge ofx;, a calculation already appearing in Refs.
definitions, (x2(t)) ~t2”, with 2v~1.25, seemingly indepen- [12,9. We define the generating functions

dent of y and the disorder streng®[10]. P(t) decays as a Foo
power law,P(t)~t™¢, Wlth a~0.59, glso independent qa‘ éi,j(Z)ZE ZtGi'j(t), (11)
and B. Due to trapping, the survival return probability {=o0
P4(t)=(p; i(t)) decays much faster, and the authors of Ref.
[10] gave a heuristic argument leading to with x;=G;;;1(z=1). The convolution theorem ensures
that
InPy(t)~ -, (6)
in qualitative agreement with numerical simulations. More- Gi_1;+1(2=Gi_1j(2G; i 11(2). (12

over the probability distributions of quantities suchpag(t)
have been shown numerically to be very broad, leading tdJsing the master equatidi) this straightforwardly leads to
non-self-averaging effects. the iterated map

Some of the peculiar properties of this model have been
related to the possible existence of multifractal distributions o]
for quantities such as the escape probabilige below[9], XNi=1= y(1—pi—Q)— X _1
in analogy[11] to what has been observed for the Sinai
model [8]. For instance, let us consider the probability 54
Gi i+1(t) that a particle makes a first passage from aisite
a sitei +1 in t steps. This obeys the master equafigh

i=1 (13

Po

Xo=7——>———, =1, (14)
Gii+1()=Wi 1161+ W;i-1Gj_1j+1(1) 1=(1=po)
T Y(1=Wiit1=Wii-1)Giiva(t=1), (7)  wherep;=w;;,, and g;=w;;_, are random variables of
, . identical distributionp given in Eq(3). Note that these vari-
with the boundary conditions ables are independent only in the nonsymmetric model, as
_ _ B the extra constraing;=p;_, holds in the symmetric case.
Goa() =Wo10,1H+ ¥(1=Wo,) Go(t=1), ®) At the cost of lengthier calculations, we have checked that
the asymptotic behaviors of the observables of interest are

i =0, fori<0. N h ility i
and G;,;.,(t)=0, for i<0. Now the escape probabilty is not affected by the value of, provided trapping is not sup-

defined as SRR ! .
pressed(y<1). This is in agreement with the numerical
+oo simulations performed in Ref§9,10]. From now on, we
Xi=2, Giisq(t), (9)  therefore restrict our analytic study $6=0. In the casey=0,
t=0 '

the maximum possible value forshould satisfy

and the authors of Ref9] claimed to have found a multi-
fractal distribution for this quantity, after averaging over max:&, (15)
and the quenched disorder. 1—0OmaXmax
In Sec. Ill we show analytically that this escape probabil-
ity has in fact a well defined distribution, and that the apparWith Prmayx= Gmax= 3. leading toXpa= 1.
ent multifractality can be ascribed to peculiar features of this
distribution. In addition, we use some of these results in Sec. g_gquation for the stationary distribution: Nonsymmetric
IV to derive the exact large time behavior Bf(t), by com- case
puting the properties of the survival probability distribution. , , _ .
We also give an exact bound on the density of particles, AS noted above, the;’s andg;'s are independent vari-

which fully confirms our result: ables in the nonsymmetric case. Let us now assume that for
largei the probability distribution ok; exists and becomes
In Py(t)~ —t3In?3(1). (10 independent of, in contradiction with the numerical claim

of Ref.[9]. The stationarity of the distribution is exploited by
Sections 1lI C and IV B, where a rigorous method to ana-expressing that the distribution &f should be the same as
lyze Lifshitz-like tails is introduced, are rather technical. Thethat of x; _; (at least for large), leading to
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1 12 12 p
f(x)—fodyf0 dp dqf(y)p(p)p(q)é(x—H,)-

(16)
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1

1 (22

en=1—U,=

As can be expectedy,— Xya=1 whenn— + .

This equation, though apparently very complicated, can be in This recursion process and the form of EB1) ensures

fact exploited quite precisely. First consides s, p=x(1
—qy) is then always within the integration doméid,3 ], for
anyqe[0,1/2] and anyy [0,1]. We then find

1 1/2
f(X)=fodyf0 dqg f(y)p(x(1—qy))p(a)(1—qy),

a7
=21F1-p)x#
1 1/2
< | ay| Tdatpa-aptFp@, a9
0 0

that is a pure power-law behavior.
For x>, imposing p=x(1—qy) €[0,3] leads to new
integration bounds:

f(x)=221"A(1-p) x*le dy
2 -1

1/2
Xf . dafy)(-ay)*fq7?, (19
1=(2x) )y

dy

-1

:22(1*3)(1_3)2)(*3]1

2—x
yI2
Xf dg f(y)y*"*(1-q)* Pq % (20
1-(2x) 1

Introducing g(x) =x#f(x), one can differentiate this equa-
tion twice with respect to the variable leading to the fol-
lowing nonlocal differential equation fog, valid for x

el[3.1]:
3-p B
X Jrx2(2—x‘1)

= (1= 2-x"1"Ag2—x71).

g"(x)+ g'(x)

(21)

that g is infinitely differentiable on the intervalul, ,up,, [ .
Moreover, ifg is d,, . 4 times differentiable ak=u,,, 4, it is
at leastd,,, 1 + 1 times differentiable at=u,, ,. This shows
that the continuity condition fog and its first derivative
suffices to determing on the interval u,,u,,4[ for n>1.
However, the knowledge of on the interval[0,3[ is not
sufficient to determingy on the next interval3,3[, as the

derivative ofg is not continuous ax=13. For instance, for

B>0, one hasg’(37)=0, whereas it can be shown that
g'(1/2+¢&)~& PIn(e). As the differential equation in Eq.
(21) is of the second order type, one of the integration con-
stants remains unknown, the other being determined by the
continuity condition atx=1/2. We are thus left with a clas-

sical shooting problem, whegg (%) will be fixed by asking
that the distribution vanishes at=1.

Let us make this point clearer in the cg8e0, for which
the first iteration can be explicitly performed starting from
g(x)=a=g(0) for xe[0,5[, where the constard is given
in Eq. (18). This constant can be eventually calculated once
the full distribution is known up to this overall constant, as it
will ensure the proper normalization of the distribution

f(x)=x"Pg(x). Forxe[%,2], we obtain

1 1
+——2—2(1——)(
X 4x2

where c=— £ xg’(2/3)/g(0). Note that in this case, we
indeed find thayg’ (1/2+ &) ~In(e), leading to an infinite de-

rivative atx=(3)". This form for g, valid on the interval
[3,3], the result of Eq(21) and the continuity condition fog
andg’ atu, (for n>1) leads to the full determination of
Then a proper choice of the constantensures thaf(1)
=0.

In Fig. 1, g(x) [equal tof(x) for B=0] is shown for
different values ofc. For the optimal choice foc, it co-
incides perfectly with the distribution obtained by directly
iterating Eq.(13). In Fig. 2, g(x)=xPf(x) is shown for

99 _ 1
g(0) 4x2

The structure of this equation is quite unfamiliar as the left-g=—1 (weak disorderand 8=3 (strong disordér The small
hand-sidegLHS) linear differential operator is determined by x behavior forf is confirmed, and the distributions are again

the value ofg atx’=2—x"! on the right-hand sidéRHS).
g(x) =xPf(x) being zero forx’ <0 (that is,xe[0,3[),

this equation actually reproduces tht(x) should be zero

for xe[0,3[, in agreement with Eq(18). Then, the knowl-

edge ofg(x’) for x’ [0,3[ determinates the LHS on the

intervalxe[3,5]. gis then determined by imposing that it is

continuous ak= 3, and a consistency equation)at 3 (see
below). This procedure can be iterated. Considgr=0 and
Uns1=1/(2—uy,) (that isu,=2—u,,); the knowledge of
on the intervalu,_q,u,[, and the continuity condition at
=u, for g and its first derivative, fully determine the func-
tion g on the next intervalu,,u,,4[. U, can be exactly
computed by induction, leading to

in perfect agreement with the numerical integration of
Eqg. (22).

C. Lifshitz tail at the edge of the spectrum

Note that all these distributions seem to vanish well be-
fore Xma=1. We will show below that this is not the case,
and that this apparent behavior can be accounted by the fact
that

f(l—e)~e % when e—0. (24
We shall see in Sec. Il E that the apparent multifractal prop-
erties of thex;'s observed in Ref[9] are partly due to this
phenomenon.
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——N.S. (and ¢=0.0678...)
-------- ¢=0.04
——--¢=0.10

2.0 4

1.5 4

0

1.0 o

0.5

f(x) for g

0.0

0.0 0.2 0.4

FIG. 1. In the casg=0 [f(x)=9(x)], we plot the distribution
obtained by iterating Eq13) 2x 10° times(N.S), and the solution
of Eqg. (21) obtained by imposingf(1)=0, which leads toc
=0.068 ... (see text The two curves are indiscernable. We also
plot the normalized solution of Eq21) for c=0.04 and 0.10.

Let us give a qualitative justification of EqR4). Taking
x=1—¢, and expecting a very fast decay @fat x=1, the
two most singular terms in Eq21) should beg” and the
RHS. It can then be checked that tlamsatz ¢l1—-¢)
~g~ % is the solution of Eq(21) (up to subleading multi-
plicative logarithmic termpsif one takesa=4.

Still, actually solving Eq.(21), even in the limitx—1,
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whereh(g)=¢/(1—¢). For smalle, we expectP(e) to be
very small asp andq are to be taken close thand, simul-
taneouslyy must be close to Isee Eq(13)]. In the vicinity
of (p,q)=3, the distributionp is smooth and roughly con-
stant[see Eq.3)]. We thus obtain

dyf
(

dpf(y),
1-¢)(1—-qy)

1 1/2

dqg
1—h(e))2y

P(8)~4(1—ﬁ)2f

1-h(e)
J!
(

(1B
2

112
(26)

1

Jo

)dy f(y)[1—y—h(e)]%
(27

From now on, we use the symbel in its true mathematical
sense, such thaa(e)~b(e) means thata(e)/b(e)—1,
whene—0. For sufficiently smalk, this leads to the upper
bound

1

Pe)=a. | dyfy)i-y-he)? @9

valid for any constana, >(1— 8)?/2. We then obtain

1-¢

P(S)Sa+f )Olyf(Y)[s—h(S)]2

remains a formidable task and the previous argument should

be taken with care. However, we can justify rigorously the
fast decaying tail of atx=1, finding a result fully compat-
ible with Eqg. (24).

ConsiderP(s)zﬁ,gf(x) dx, the probability to have;
>1—e¢. In a way similar to that leading to E¢RO), we find

1 1/2
P(e)= f dy
1—h(e)

<

dqg

(1=h(e))/2y

1/2

dp f(y)p(p)p(a), (25

1-2)(1-qy)

| p=-112
3
-
x 24
=
3 [
1 6=1/2 &
04
T 1

0.0 0.5

X
FIG. 2. We plotg(x)=x#f(x) for B=—3, 0, and3. In each

case, the distribution is obtained by iterating the map of &8)
2x10°. The agreement with the numerical solution of E) is

perfect.

tay Ll_gdy f(y)h(e)?, (29
where we have used the fact that
[1-y—h(e)’<[s—h(e)]*~&*
for ye[1—h(e),1—¢], (30
[1-y—h(e)]°<h(e)?>~&? for ye[l—¢,1]. (31
Thus there exist two constargs anda,, such that
P(e)<ase?P(h(e))+ae?P(e). (32

Finally, this last inequality shows that for sufficiently
small, there exists a constafit, >0 such that
P(e)<A.e*P(h(¢)). (33

On the other hand, using again Eg7) and choosing a suf-
ficiently small 6 to be determined below, we have

(1-B)?
2

1

).

=A_P(h(e)(1+6))e??,

P(e)= dy f(y)[1-y—h(e)]%

—h(e)(1+6) 34
34

(35

again valid for any constanA_<(1—p3)%/2, for small
enoughe. In the following, we takes=¢“, and will fix the
constraint ona later.
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Let us now start from a small enough such that the
inequalities in Eqs(33) and (35) hold. Takinge, =&, =,
we then define:, ande, by the recursion relations

+
En+1 -

+ €n T€n+1
“€nt1

1+(eqp))”

+_ + o\
Sn_h(8n+l)_ -
1-en4q

(36)

Both sequences go te=0. These recursion relations can

also be rewritten

1 1

— =1 (37)
€nt+1 €n
1 1 o
— — —=1+0(g,,“ ). (38)
€n+1  €n

Thus, for anya>1, both sequences are equivalentnto
(by applying Cesaro’s mean theorgm

(39

Then, by iterating the recursion relations of E¢33) and
(35), we obtain

n—-1

|n(P(a;))<4kZO In(e;)+nIn(A,)+In(P(&))

~—4nIn(n), (40

n-1
|n(P(g;))>2(1+a)k§_)o In(e;)+nIn(A_)+In(P(&))
~=2(1+a)nIn(n). (41

Finally, using Eqs(37) and(38) and the fact thaP(¢) is a
continuous and increasing function of and sincex can be

CLEMENT SIRE
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D. Escape probability distribution: symmetric case

In this section we are interested in the symmetric version
of our model for whichg;=p;_,. The approach is slightly
different from that of the previous case, but is definitively in
the same spirit. As a consequence, less attention will be paid
to rigorous arguments, although they can be adapted without
any difficulty to this problem.

The map now becomes

Pi

SR B— a4
1-pi-1Xi—1 (44

Xj

which shows that the novel variablg=p;x; satisfies the
recursion

2
Pi
= 45
yl 1_yi—1 ( )
u=p? has a distributiorr(u) satisfying
1/2
o(u)=| dwp(w)s(u—w?)
0
=2"F(1-p)u-A*P2g(u)a(1/4—u).  (46)

Using Eq.(45), we find thaty is always in[0,3], and that for
ye[0,4], the probability distributior(y) of y satisfies

1/2
F(y)=2’ﬁ(1—,8)y*(1+/3)/2J' F(y/)(l_yr)(lfﬁ)IZdyr1
0
(47)

which is a pure power-law behavior. Fpr-, and proceed-
ing along the same line as in the nonsymmetric case, we find
that F(y) satisfies the following nonlocal differential equa-
tion:

1+ 1- 1
F'(y>+2—BF(y>= BF(l——). (48)

y 8y? 4y

Again, the knowledge oF (y) on the interval0,3] permits

arbitrary close to 1, we obtain that for any arbitrary smallthe determination of the distribution on the next interval

7>0, there existg >0, such that for any € e<e,

_41-7) 4(1+7)
&

In(e)<—In(P(g))<— In(e),

(42

&

which leads to our final result,

—In(P(e))~—In(f(1-&))~— gln(s) when &—0,
(43

which is a more precise and rigorous statement than that gdualities as in

+,%] and by recursion on each of the intervals of the form
[Un,Uneq], with u,=n/2(nN+1).
Now, let us analyze the behavior ofP(g)
=[12__F(y)dy, for small &. Defining h(e)=¢/(1—2¢),
we easily find that there exist two constaotand C (which
can be actually determingguch that

P(a)~cf0h(8)(h(e)—z)F(l/z—z) dz~Ce2P(h(e)).
(49

The last estimate is obtained using the same types of in-
the nonsymmetric case. Again defining,

Eq. (24). It can also be shown that the subleading terms irfn+1=&n/(1+2&n), and using the fact that,~(2n) ~*, we

find that

Eq. (43) area priori of order InIn(1/e))/ <. In practice, these
strong subleading corrections and the very fast decay of the
distribution nearx=1 make the quantitative numerical con-
firmation of Eq.(43) quite difficult.

In(en)

IN(P(en))~2>, In(e)~ ,
k=1

€n

(50
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—— Symmetric model case could have been treated by the same techniques as in
o8 Nonsymmetric model this subsection by replacing the distributiorof p? with the
distribution & of ;i 1.

Finally, we can conclude that up to a few irrelevant de-
tails, the symmetric and nonsymmetric models seem to share
exactly the same properties. This is apparently surprising,
since the corresponding models without trapping are drasti-
cally different[7]. This intriguing property is confirmed and
explained physically in Sec. IV D.

0.6

6.4

X1/2f(X)

0.2

0.0 E. Explanation of the apparent multifractality

—— 71— - In the preceding subsections, we have obtained a puzzling
0.0 0.2 0.4 0.6 0.8 1.0 . .
numerical resuli(see Figs. 1-8 although we have shown
X that the maximum valu&,,,,=1 must be attained, the nu-
FIG. 3. We plotg(x)=x#f(x), for =3, and after % 10 it- merical maximum value effectively obtained afteix 20°
erations of the symmetric and nonsymmetric maps. As explained ifférations of the map Eq13) is typically of orderXmay,eir

the text, the distribution decays faster in the nonsymmetric case. ~0.73~78, for the three values g actually tested in the
nonsymmetric case. This apparent paradox can be explained

which finally shows that by the sharp decay of the distributidiix). Xmax et CaN be
estimated by considering that aftdriterations of the map,
In(e)

— 51
& 6D Jl f(x) dx~N"1, (56)

Xmax,eff

IN(P(&))~IN(F(1/2— &)~

From the knowledge of the properties lbfy), we have ac-

cess to that off(x), the stationary distribution of the’s,  \yhich is the smallest nonzero value that this integral can take
using the relation (the integrated distribution increasing by elementary steps of
v rie b height N™%). Using Eq.(43), we find thate =1—Xmaxefr
0= “dp dw(p)F(y)a(x— o] G2 mustsatisty
0 0 -
In(e) 1

Let us exhibit the main properties &fwhich will be com- ~ZIn(N) (57)
1 :

pletely similar to those obtained in the nonsymmetric version
of the model. Foxe[0,1/2], Eq.(52) leads to

If we now take N=2x10° the above estimate gives
12 Xmax.eff=0.75, in fair agreement with the observed range of
f(X)ZZlfﬁ(l—ﬁ)Xfﬁf F(y)(1-y)*"#dy, (53  numerical effective values fof,q,.
0 In the limit of very largeN, Eq. (43) also leads to the

which shows thaf (x) is simply proportional tax # as in  leading order estimate

the nonsymmetric case. Fak[3,1], we obtain

. _ 4 In(In(N)) 59
1_B 1 l 54 max,eff” |n(N) )
238 |7 2/ 54

9'(x) = (P (x))" = F

which goes to zero very slowly.
Using Eq.(51), we finally conclude that In Ref.[9], the fact thai,,,,= 1 was not recognized. The
authors actually computed the multifractal distribution of the
2 X's in the interval[ 0 Xmax el - This interval was cut inta
)~gln(s), (55 equal length intervals, ang; was defined as the fraction of
the total number of the;’s that belongs to thé¢th interval.
which is a similar behavior to that found in the nonsymmet-One then definefl3]
ric case[see Eq(43)] up to the factor 4 which is replaced by
a factor 2. The physical interpretation of this smaller coeffi- n
cient is quite clear: in the nonsymmetric case, forto be Z(q,n)=> pd~n~7@, (59
close to 1, one must havwe 4, p;, andg; close to their =1
maximal value. In the symmetric case, forto be close to 1,
only x;_, and p; must be close to their maximal value, as the last equivalent defining the scaling exponefy) asso-
gi=pi_1 is automatically close to 1/2 ag_, is close to 1. ciated with theqth moment. Let us first derive the exact
This extra constraint explains wHy{x) decays faster in the expression of-(q) for a given choice of3>0 (strong disor-
nonsymmetric case than in the symmetric case, which is cordern, and taking the actual value of,,=1. For 0<q
firmed numerically in Fig. 3. Note that the nonsymmetric <1/8, the functionf(x)? is integrable, so that

In(f(l—s))~ln(F<1— m



1470 CLEMENT SIRE PRE 60

IV. LARGE TIME BEHAVIOR OF THE SURVIVAL

n
1
}S(npoq~n*m*”f f(x)9dx. RETURN PROBABILITY
i=1 0

1
Z(q'n):|’]*(CI*1)><ﬁ

(60) A. General results

Following the tracks of Ref.10], let us evaluate the sur-
This shows that, in this regime(q) =q— 1. Forg>1/3, the vival return, or more exactly, its discrete time Laplace trans-
function f(x)9 is no longer integrable due to the power-law form. We consider the symmetric model but the nonsymmet-
divergence ak=0: ric case can be treated in the same spirit, leading to exactly
the same results.

Thus consider
n

1 1
Z(q,n)=n"q’”><ﬁi2 (npi)q~n*(q*”flmf(x)qdx . _g Poi(t)
Poj(@)= 2 Lra) (64)
~n-1-8q (61)

It can be showri10] that E)O,i(w) satisfies the equatigrsee
In this regime, we thus find(q)=(1— 8)q. Moreover, for Eq. (7)]

=1/B, we find ~ ~ ~ _
a=up Po; (@) =W;_1;Po;-1(@)+ W s1Pgj+1(®)+(1+w®) 18 .
(65)
1
Z(q=1/ﬁ,n)~n*(1’5*1)f/ f(x)Y2 dx~n~ME-Din(n), Then, the variablesp; (») and ¢; (w), defined, respec-
1n . . .
62) tively, for i>0 andi<0 by
b oy Wiy E’O,i(w)
which shows that in the regiog~ 1/3, the numerical deter- b (0)=37 S (@)
mination of 7(q) will be strongly affected by a logarithmic 0=t
slow crossover. Finally, strictly speaking(,q) is not defined W Boi(®)
for negativeq, due to the essential singularity &f.,=1. b (w)= i+l Apo" @ , (66)
But if one computes the multifractal scaling exponents by 1t Poj—1(w)

restraining the study on the interved Xac el (@s in Ref. . ) o
[9]), we then recover(q) =q— 1, for negative values af as sat|s_fy the same recursion, reminiscent of that of &c).
well. For instance,

The two linear regimes for(q) are clearly visible in Fig. )
4 of Ref.[9], with the predicted slopes and transition point Hi-1 . Wiy
g=1/B8. Of course, numerically, the change in sldfem 1- ¢ 4 (w)
7'(q)=1to7'(q)=1-pB] is found to be smooth, partly due
to the logarithmic correction arourgl=1/8. Then, the spec- with a similar equation foi<0. It can then be shown that
trum of singularities defined as the Legendre transform of

T bmax @) +
(a) [13], (Pod®))= fo de

S(a)=aq—7(q), a=7'(q) (63

bi (w)=

¢max(‘”) _ " _
< [ n 6 M0
0

apparently yields a nontrivial spectrum, whereas the actual

one is concentrated on two points= 1, with a support of O1l—¢"—¢")

fractal dimensiors(1)=1, reflecting that for almost all val- X 1—gpt—¢~

ues ofx the distributionf(x) is actually continuous, and

=1-p, with a support of fractal dimensios(1—8)=0,  wherell (), is the expected stationary distribution ¢f

which simply results from th&=0 singularity of the distri- and¢ .

bution f(x). From now on, we follow the method of Sec. Il to evalu-
The moral that we can draw from this is that one must beate the behavior of the distributiohl ,(¢) close to ¢

very careful when dealing with multifractal analysis, espe-= ¢,.,,, and for smallw [as we are mainly interested in the

cially if there is no special reason to expect a multifractallarge time behavior oP(t)]. From EQ.(67), ¢maf®) can
spectrum. Similar problems were encountered by the authase easily calculated:

of Ref.[14], who obtained an apparent multifractal spectrum

in a model which can actually be solved exa¢il$], and for 1 _ 1 I5) 0
which it can be shown that the true multifractal spectrum is Pmad @) = 5(1_ V1-(1+w)™9)= 27 §+ O(w™).

of the same type as above. Similar doubts can be raised on (69)
the findings of multifractal spectra in certain biological sys-

tems or in the field of financgl6], where simple power-law Moreover, using again E¢67), we find thatll ,(¢) satisfies
distributions can lead to such apparent behaviors. the following self-consistent equation:

: (68)
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1/4 ¢’max(w)
Hw(¢):JO dXJO d¢' o(x)IL,(¢")d

X

x| p— ———/, 70
<¢ (1+w)*(1-¢') (7o

where the distributions(x) of x=u?(1+ w)? is given by
Eq. (46).

Equation (67) can be first solved forp<1/4(1+ w)?,
leading to a pure power-law behavi@s encountered in Sec.
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we present now. Again, let us defineP (&)
= fﬁmaﬁggﬁgnw(@ d¢, which satisfies

1/4 Bmak )
P“’(s):Jo dXJ0 d¢a(xX)I,(p)0

B
(1+w)*(1-¢)

Once we express the actual domain of integration by impos-
ing that the argument of thé function be positive, we find

X

te— d’ma)é(w)) . (79

): that the variable« remains very close t§, where the distri-
bution o(x) is essentially constant. Exploiting this fact, we

I (6)=2-F(1— B)(14 @)~ (B y=(+8)2 find after a few elementary manipulations that

‘f’ma)&w) Hw
T

0 (1_¢l)(l+ﬁ)/2
For ¢>1/4(1+ w)?, one can differentiate E¢70) (noticing

that ¢’ e [1—[1/4(1+ w)?¢]]), which leads to the follow-
ing differential equation foll ,(¢):

Pw(s)~Cfor£Pw(u) du, (76)

(71
with  r=[1— ¢ (@) dral®)]>1, and C=o(1/4)/

4r pad ®). This equation is a rigorous integrated version of
Eq. (73). Note that, for smallw, we have

r=1+2\2w+0(w%*?. (77

We can now proceed in the same spirit as we did in Sec.
Il C, and find exact inequalities fdP (¢). For anyc,>C,

, 1-p _ (s
[ AP, ()] =~ — (1t o) A | and sufficiently smalk

y 1_;)_ - Pw(s)sc+LSPw(u)du+c+f:Pw(u)du, 79)
4(1+w)%0

<c,(r—1)eP,(re)+c,eP,(e), (79

The leading asymptotics @f,(¢) close tog= pma(w) can  which finally leads, for small enough to the existence of a
be calculated rigorously, adapting the method of Sec. Ill CconstantC, of orderO(1), such that

Here we first derive this result by a less rigorous method
already mentioned in Sec. Il A, consisting of keeping only
the most singular terms in the differential equatitf®),
leading to

P,(e)<C.(r—1)eP,(re). (80)

On the other hand, for any <1 close to 1, to be specified
later, we can write that

re
1 P, ac,f P,(u)du, 81
H;(¢)~Anw( 1-— ()=C- |, PulW 8D
4(1+w)?¢
=C_(1-r")eP,(r're). (82
1- dpaf @)
~All,| ¢pmad @) — o (w) °) (73 Let us now start from a small enougiy=¢ such that the
ma inequalities of Eqs(80) and (82) hold, and define
+_ -1+ -
whereA is a computable positive constant, and the explicit en =1 ey =1 "8, (83)
equation forg,( @) was used. One can try an ansatz form e=(r'r) Ler_ L =(r'n) . (84)

for IT ,(¢), which satisfies this equation up to multiplicative

logarithmic terms. We find In the following, we will choose’ such that 'r>1, so that

e, —0, whenn— +ox,

In%(e) 1= ol @) By iterating the recursion inequalities we obtain
IN[I1,(Prmaf @) — )]~ — with r=——"2 -
2In(r) Dmad @) n N
(74) ~In(Py(&7))==nIN(C(r=1)= 2, In(e;)
B. Tail of the distribution ~In(P. (), @9
2
In fact, this complicated ansatz was originally found o _ n-
by applying a method similar to that of Sec. Il C, which nin(C.(r=1))+ 2 In(r), (86)
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where, after using~ —In(e,)/In(r), the last line can also be

written
In’(eq)  IN(Ci(r=1)
21In(r) In(r) (en)- 87
Similarly,
n—1
~In(P, (g, ))<—nIn(C_(1-r"))— E In(ey)
—In(P,(¢)), (88)

2

~—n|n(C,(1—r’))~|—%In(r’r), (89)

where the last line can also be written under the form

In%(s;)

21In(r'r)

In(C_(1-r"))
+

In(r'r)

In(e). (90)

CLEMENT SIRE
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1/2
[(Pod0))— (Pod @)} Jsng~ L a0 dx

ma

p( cqIn(w) )
~ex ,
Vo

where the last estimate comes from E#). In principle, the
leading singular correction to E(P5) should come from the
contribution ofII, to the integral of Eq(68) on the interval
[0,éma] and should be of order ekpc,In%(w)/\w].

A contribution of the form exptc|in(w)|*/w®) in a
Laplace transform generally originates from a large time de-
cay of the form(as found by a steepest descent type of ar-
gumenj

(99

exq_Cta/(l+a)|na’/(l+a)(t)). (96)

If we take the logarithmic corrections in E(P5) seriously,
we thus find

(Pod(t))~exp(— Ct*3in?¥1)), (97)

in disagreement with the heuristic argument given in Ref.

Sincer’ can be arbitrarily close to 1, we thus find that the[10] [see Eq.(6)].

leading order of Eq(74) is exactly recovered.
Now, we restrict ourselves to the case of small and

analyze the effect of the subleading term. To be specific, let

us take +r'=w'?"? with & arbitrarily small, such that the

conditionr’r>1 remains satisfiefisee Eq.(77)]. Our final
results are thaP_ (e)<P,(g)<P_ (&), with

T L RS o1
n P>
42w 4J_
—In(P, (&)~ In*(e) +(1+26) In(e )In() (92)
420 2a
which strongly suggests that
In(e)In(we)
_|n[Hw(¢max(w)—8)]~—|n(Pw(8))~W-
(93

Note that the case =0 falls exactly in the class of prob- the following problem where we consider, o, . . .

D. Exact bound for the survival return probability

In this subsection, we give an exact lower bound for the
number of surviving particles using an argument which can
be easily generalized to obtain a similar bound(fiog o(t)).
The resulting bound is fully consistent with E7), and
contradicts the heuristic estimate of REf0] [see Eq.(6)].

Consider the symmetric modelw(; . ;=w; ;). The
probability of having a region ofL sites on which all
Wi, ... W_p 1>1/2—¢ is

Pi(e)=[1-(1-2e)' " P]""2~[2(1-B)e]". (99

If we were interested in the nonsymmetric model, the cor-
responding  probability of having w;,,w,;.. .,
W|__2Y|__1,W|__1‘|__2> 1/2_8 WOUId be Slmply

Ple)=[1-(1-28)' PPPL"2~[2(1-B)e]?, (99

and the rest of the argument would be essentially identical.
On such a region, the density cannot decay faster than that of

We-11

lem studied in Sec. llIC, leading to the exact asymptotics=1/2—¢, with fully absorbing boundary conditionswg ;

[with ¢may0)=3]

In(IT,,-o(1/2=&))~In(P,,- 0(8))~L (94

C. Survival return probability

=W3 =W, _1; =W —;=0). This simple property can be
shown by induction using the master equation fg(t), the
density at sita:

pi(t=0)=1.
(100

This simpler problem can be solved exadiby the lattice or

Pi(t+ 1) =W, 1;Pi+1()+Wi_1; pi—1(1),

The results of this section will not rely on mathematical in the continuumy leading to the following bound for the
grounds as firm as that of the preceding sections, but wilhverage decay of the total density:

appear to be quite reasonable. Comparison of Ef3.and
(94) suggests that the asymptotics of E®R) should be cor-
rect at least up te of order o~ 1/2— ¢ w) [or more
exactly Jo/|In(w)]]. Using Eq. (68), we find that there
should be a singular contribution {po(w)) of order[see
Eqg. (93]

8 it
nL(t)>;ex —E—Zst . (101

Finally, we find that the total density(t) is bounded for any
L ande by the exact lower bound
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2t the region but not on its size. Finally, the authors did not

n(t)>Coexp< -~ 2st+L In(2(1—ﬁ)g)) , (102 realize that in the final expression that they obtainetand
2L not onlyL) should also be treated as a variational parameter.
Note that for intermediate times, we expect that the den-

whereC, is a positive constant. We can now take the max"sity should decay as

mum of this lower bound ovdr ande. Expressing this con-
dition, we obtain the following optimal values far and & n(t) ~exp(— cN(t))~ exp — Ct?), (106)
defined implicitly by

2 U3 [ 32 U3 whereN(t) is the number of different sites visited by a ran-
L=2ct=|— 7 |27 , (103 ~ dom walker. This phenomenon is also well known for the
In(2(1—-pB)e) 21n(t) Donsker-Varadhan problem, for which this behavior can ac-

tually dominate the numerically accessible time regj#hg].
Finally, the generalization to higher dimensions of this
model is straightforward. On a periodic lattice of coordina-
13 tion numberz, the hopping probabilities are bounded by,
In?3(t), (104 and particles disappear if they do not move. The above ar-
gument suggests that

where the last estimate is valid for large time.
Finally, we have shown that

2

2

n(t)>exp—S(t) with S(t)~

in perfect agreement with the above analytical argument. The d/(d+2)-2/(d+2

physical interpretation of this result is that surviving particles n(t)~exp(~ Ct¥@ 2 D). (1079
are living in large regions where thvg ;., are very close to

1, and annihilates with a large probability outside these re- V. CONCLUSION

gions. This explains why the symmetry of the hopping prob-
abilities is irrelevant, and why the result is essentially similar
to that of perfectly diffusing particles with randomly distrib-
uted perfect traps. Thedfi(t) corrections are due to the fact
that for large timew; ;.; in regions where the surviving

In this paper, we have considered a model where the trap-
ping probabilities are strongly correlated with the hopping
probabilities of the walker. We have shown that the escape
probabilities have a well defined distribution which has been
particles stand must be closer and closes tavith an al- analyzed in grgat Qetail in Sec. lll. we havg also ex.pla'ined
lowed fluctuation decreasing as-t~23. Moreover, within v_vhy this quantity displays an apparent multifractal distribu-

' tion. In Sec. IV, we generalized our approach to the study of

these large regions there is an extra probability of leaking pef : oo o o
site of ordere. Note, finally, that if G<y<1, the argument the survival return probability distribution. We deduced from

) . this exact analysis that this survival probabilignd the den-
can be repeated witht replaced by (* y)et in Eq. (101, . .
leading topthe sar\me decaF\)ying ber):a(vior?/)s in Eq. (10 sity) decays as exp- Ct*3n?3(t)). To support this result,
Let us now exhibit the flage) in the ér ument aiven in W€ have obtained an exact bound for the density which even
Ref.[10], leading to Eq(6). On a large reg?on of siz%e with reproduces the correct power of the logarithmic correction.

- i Moreover, we have explained the independence of the model
\évti)'iilﬁ l>dé/c 2a Sa{sthe authors of Re{10] estimated the prob- properties with respect to the disorder strengththe trap-
y y ping ratey>0 and, more surprisingly, the symmetry of the

i hopping probabilities.
n () ~exp — ——eL¥|, (105 ~ A challenging problem is the understanding of the diffu-
v sion properties in this model. The fact that the effective

spreading of the survivors is apparently faster than diffusive
wherev is the effective diffusion exponent defined in E§) [see Eq.(5)] remains to be explained.
and below. This estimate is to be compared to ou(HY). Note added After this paper was released on cond-mat,
The first term is supposed to represent the probability decaghe authors of Refd[9,10] mentioned to me that they had
due to the absorption of particles at the boundaries of theater realized that multifractality of the first return probabili-
considered region. It is not correct to consider that particlesies was dubious and that their heuristic argumentrit)
in this region display anomalous diffusion, as;-.; are in  was wrong, as they claimed to have also found the correct
fact very close to3. This fact is confirmed by the exact one presented hefenpublished
bound, Eq(101). The second term in the exponential is sup-
posed to reflect the fact that there is a small trapping prob-
ability (of ordere) on each site of the considered region. The
authors of Ref[10] assumed that time can be replaced by | am grateful to F. van Wijland, C. Monthus, and S. Red-
LY. This is obviously wrong, as the decay due to this smallner for helpful discussions on this problem, and D. Dean for
trapping probability explicitly depends on the time spent inuseful comments on the manuscript.
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