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Analytical results for random walks in the presence of disorder and traps

Clément Sire*
Laboratoire de Physique Quantique (UMR C5626 du CNRS), Universite´ Paul Sabatier 31062, Toulouse Cedex, France

~Received 17 February 1999!

In this paper, we study the dynamics of a random walker diffusing on a disordered one-dimensional lattice
with random trappings. The distribution of escape probabilities is computed exactly for any strength of the
disorder. These probabilities do not display any multifractal properties, contrary to previous numerical claims.
The explanation for this apparent multifractal behavior is given, and our conclusions are supported by numeri-
cal calculations. These exact results are exploited to compute the large time asymptotics of the survival
probability ~or the density! which is found to decay as exp@2Ct1/3ln2/3(t)#. An exact lower bound for the
density is found to decay in a similar way.@S1063-651X~99!07608-4#

PACS number~s!: 05.40.2a, 05.60.2k, 02.50.Ey, 61.43.Hv
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I. INTRODUCTION

The dynamics of the survival probability of particles d
fusing in the presence of traps is a rich problem which
been widely discussed in the physical and mathematical
erature within the past two decades@1–5#. The simplest sys-
tem is that of diffusing particles in the presence of perf
static traps@1–4#. This problem ~which we will call the
Donsker-Varadhan problem! has been solved using very di
ferent technics. The main result is that the density does
decay exponentially~as a simple mean-field argument wou
predict!, but as

n~ t !;exp@2Cd„2 ln~12c!…2/(d12)td/(d12)#, ~1!

where c is the trapping site density. The physical inte
pretation ind dimensions is that the process is dominated
particles standing in very large trap-free regions of line
sizeL @these regions have a probability of order exp(2cLd)
for small c#. In such a region, the density decays
exp(2t/L2). A saddle-point argument then leads to the res
of Eq. ~1!, with the relevant regions being of typical sizeL
;(t/c)1/(d12), at timet.

In another class of models@5#, the traps are allowed to
move. When these traps undergo free diffusion, the den
of particles decays as

n~ t !;exp@2Cdctd/2# ~2!

for d,2, and decays exponentially ford.2. This result
holds in the case of static or diffusing particles@5#.

It would be interesting to introduce the effects of hoppi
disorder on the trapping process. Even without trappi
quenched disorder in the particle hopping probabilities
known to have very important effects on the diffusion a
first return properties@6–8#. In the case of symmetric hop
ping probabilities (wi ,i 115wi 11,i) @6,7#, anomalous diffu-
sion is observed, with an exponent depending on the pro
ties of the disorder. In the generic nonsymmetric case~see
Ref. @7# for a more precise criterion!, as in the Sinai mode
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@8# where a particle diffuses in a random~Brownian! poten-
tial, the diffusion is dramatically suppressed, the particle
ing effectively trapped in deeper and deeper valleys of
potential as time goes on. In the present paper, we study
dynamics of particles diffusing in a symmetric or nonsym
metric disorder, in the presence of a random finite trapp
probability at each site.

II. MODEL AND KNOWN RESULTS

Consider a particle moving on a one-dimensional latt
with random barriers~or hopping probabilities! and random
trapping probabilities. More precisely, a particle at sitei has
a probabilitywi ,i 11, 1

2 ~respectivelywi ,i 21, 1
2 ) to hop on

site i 11 ~respectivelyi 21), and a probability (12g)(1
2wi ,i 212wi ,i 11) to disappear~g,1!. With residual prob-
ability g(12wi ,i 212wi ,i 11), it just stays on sitei. The hop-
ping probabilities can be taken to be symmetric (wi ,i 11
5wi 11,i) or nonsymmetric, and will be chosen according
the typical probability distribution

r~w!5212b~12b!w2bu~w!u~1/22w!, ~3!

whereb,1 measures the quenched disorder strength.
The caseg51 ~no trapping! has been extensively studie

@6–8#. In the symmetric case@6,7# one observes anomalou
diffusion, ^x2(t)&;t2n, with n depending continuously onb.
The return probabilityPs(t)5^pi ,i(t)&, which is the prob-
ability of being at sitei at time t having started at sitei,
decays asPs(t);t2ds/2, whereds is the spectral dimension
@6,7#. The Sinai model@8# describes the generic nonsymme
ric case, and displays logarithmically slow diffusion an
other peculiar properties.

In the presence of trapping~0<g,1!, the problem has
been studied essentially by numerical means@9,10#. In addi-
tion to Ps(t), one can define the normalized return probab
ity P(t) as

P~ t !5K pi ,i~ t !

(
j

pi , j~ t !L . ~4!
1464 © 1999 The American Physical Society
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Note that in order to keep the notations simple, it is und
stood that^•••& involves an average over the disorderand
the considered sitei. The proper way of defininĝx2(t)& is
now

^x2~ t !&5K (
j

pi , j~ t !~ j 2 i !2

(
j

pi , j~ t !
L , ~5!

only taking into account surviving particles. With these ne
definitions,^x2(t)&;t2n, with 2n'1.25, seemingly indepen
dent ofg and the disorder strengthb @10#. P(t) decays as a
power law,P(t);t2a, with a'0.59, also independent ofg
and b. Due to trapping, the survival return probabili
Ps(t)5^pi ,i(t)& decays much faster, and the authors of R
@10# gave a heuristic argument leading to

ln Ps~ t !;2At, ~6!

in qualitative agreement with numerical simulations. Mo
over the probability distributions of quantities such aspi , j (t)
have been shown numerically to be very broad, leading
non-self-averaging effects.

Some of the peculiar properties of this model have b
related to the possible existence of multifractal distributio
for quantities such as the escape probability~see below! @9#,
in analogy @11# to what has been observed for the Sin
model @8#. For instance, let us consider the probabil
Gi ,i 11(t) that a particle makes a first passage from a sitei to
a sitei 11 in t steps. This obeys the master equation@9#

Gi ,i 11~ t !5wi ,i 11d t,11wi ,i 21Gi 21,i 11~ t !

1g~12wi ,i 112wi ,i 21!Gi ,i 11~ t21!, ~7!

with the boundary conditions

G0,1~ t !5w0,1d t,11g~12w0,1!G0,1~ t21!, ~8!

and Gi ,i 11(t)50, for i ,0. Now the escape probability i
defined as

xi5(
t50

1`

Gi ,i 11~ t !, ~9!

and the authors of Ref.@9# claimed to have found a multi
fractal distribution for this quantity, after averaging ovei
and the quenched disorder.

In Sec. III we show analytically that this escape probab
ity has in fact a well defined distribution, and that the app
ent multifractality can be ascribed to peculiar features of t
distribution. In addition, we use some of these results in S
IV to derive the exact large time behavior ofPs(t), by com-
puting the properties of the survival probability distributio
We also give an exact bound on the density of partic
which fully confirms our result:

ln Ps~ t !;2t1/3 ln2/3~ t !. ~10!

Sections III C and IV B, where a rigorous method to an
lyze Lifshitz-like tails is introduced, are rather technical. T
r-

f.

-

to

n
s

i

-
-
s
c.

s,

-

reader more interested in the physical consequences of t
results could skip these technicalities and take the qualita
arguments given in the beginning of these sections
granted.

III. ESCAPE PROBABILITY DISTRIBUTION:
NONSYMMETRIC CASE

A. Preliminaries

Let us show thatxi 11 can be simply evaluated from th
knowledge ofxi , a calculation already appearing in Ref
@12,9#. We define the generating functions

Ĝi , j~z!5(
t50

1`

ztGi , j~ t !, ~11!

with xi5Ĝi ,i 11(z51). The convolution theorem ensure
that

Ĝi 21,i 11~z!5Ĝi 21,i~z!Ĝi ,i 11~z!. ~12!

Using the master equation~7! this straightforwardly leads to
the iterated map

xi5
pi

12g~12pi2qi !2qixi 21
, i>1 ~13!

and

x05
p0

12g~12p0!
, i>1, ~14!

where pi5wi ,i 11 and qi5wi ,i 21 are random variables o
identical distributionr given in Eq.~3!. Note that these vari-
ables are independent only in the nonsymmetric model
the extra constraintqi5pi 21 holds in the symmetric case.

At the cost of lengthier calculations, we have checked t
the asymptotic behaviors of the observables of interest
not affected by the value ofg, provided trapping is not sup
pressed~g,1!. This is in agreement with the numerica
simulations performed in Refs.@9,10#. From now on, we
therefore restrict our analytic study tog50. In the caseg50,
the maximum possible value forx should satisfy

xmax5
pmax

12qmaxxmax
, ~15!

with pmax5qmax5
1
2 , leading toxmax51.

B. Equation for the stationary distribution: Nonsymmetric
case

As noted above, thepi ’s and qi ’s are independent vari
ables in the nonsymmetric case. Let us now assume tha
large i the probability distribution ofxi exists and become
independent ofi, in contradiction with the numerical claim
of Ref. @9#. The stationarity of the distribution is exploited b
expressing that the distribution ofxi should be the same a
that of xi 21 ~at least for largei ), leading to
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f ~x!5E
0

1

dyE
0

1/2

dpE
0

1/2

dq f~y!r~p!r~q!dS x2
p

12qyD .

~16!

This equation, though apparently very complicated, can b
fact exploited quite precisely. First considerx< 1

2 , p5x(1

2qy) is then always within the integration domain@0,1
2 #, for

any qP@0,1/2# and anyyP@0,1#. We then find

f ~x!5E
0

1

dyE
0

1/2

dq f~y!r„x~12qy!…r~q!~12qy!,

~17!

5212b~12b!x2b

3E
0

1

dyE
0

1/2

dq f~y!~12qy!12br~q!, ~18!

that is a pure power-law behavior.

For x. 1
2 , imposing p5x(12qy)P@0,1

2 # leads to new
integration bounds:

f ~x!522(12b)~12b!2x2bE
22x21

1

dy

3E
„12(2x)21

…y21

1/2

dq f~y!~12qy!12bq2b, ~19!

522(12b)~12b!2x2bE
22x21

1

dy

3E
12(2x)21

y/2

dq f~y!yb21~12q!12bq2b. ~20!

Introducing g(x)5xb f (x), one can differentiate this equa
tion twice with respect to the variablex, leading to the fol-
lowing nonlocal differential equation forg, valid for x

P@ 1
2 ,1#:

g9~x!1F32b

x
1

b

x2~22x21!
Gg8~x!

5~12b!2xb25@22x21#2(11b)g~22x21!. ~21!

The structure of this equation is quite unfamiliar as the le
hand-side~LHS! linear differential operator is determined b
the value ofg at x8522x21 on the right-hand side~RHS!.

g(x)5xb f (x) being zero forx8,0 ~that is, xP@0,1
2 @),

this equation actually reproduces thatg8(x) should be zero

for xP@0,1
2 @ , in agreement with Eq.~18!. Then, the knowl-

edge ofg(x8) for x8P@0,1
2 @ determinates the LHS on th

intervalxP@ 1
2 , 2

3 #. g is then determined by imposing that it
continuous atx5 1

2 , and a consistency equation atx5 2
3 ~see

below!. This procedure can be iterated. Consideru050 and
un1151/(22un) ~that isun522un11

21 ); the knowledge ofg
on the interval@un21 ,un@ , and the continuity condition atx
5un for g and its first derivative, fully determine the func
tion g on the next interval@un ,un11@ . un can be exactly
computed by induction, leading to
in

-

«n512un5
1

n11
. ~22!

As can be expected,un˜xmax51 whenn˜1`.
This recursion process and the form of Eq.~21! ensures

that g is infinitely differentiable on the interval ]un ,un11@ .
Moreover, if g is dn11 times differentiable atx5un11, it is
at leastdn1111 times differentiable atx5un12. This shows
that the continuity condition forg and its first derivative
suffices to determineg on the interval@un ,un11@ for n.1.
However, the knowledge ofg on the interval@0,1

2@ is not
sufficient to determineg on the next interval@1

2,
2
3@, as the

derivative ofg is not continuous atx5 1
2 . For instance, for

b.0, one hasg8( 1
2

2)50, whereas it can be shown tha
g8(1/21«);«2bln(«). As the differential equation in Eq
~21! is of the second order type, one of the integration co
stants remains unknown, the other being determined by
continuity condition atx51/2. We are thus left with a clas

sical shooting problem, whereg8( 2
3 ) will be fixed by asking

that the distribution vanishes atx51.
Let us make this point clearer in the caseb50, for which

the first iteration can be explicitly performed starting fro

g(x)5a5g(0) for xP@0,1
2 @ , where the constanta is given

in Eq. ~18!. This constant can be eventually calculated on
the full distribution is known up to this overall constant, as
will ensure the proper normalization of the distributio

f (x)5x2bg(x). For xP@ 1
2 , 2

3 #, we obtain

g~x!

g~0!
5

1

4x2
1

1

x
2222S 12

1

4x2D S lnF x

2~2x21!G1cD ,

~23!

where c52 8
27 3g8(2/3)/g(0). Note that in this case, we

indeed find thatg8(1/21«); ln(«), leading to an infinite de-

rivative at x5( 1
2 )1. This form for g, valid on the interval

@1
2,

2
3#, the result of Eq.~21! and the continuity condition forg

andg8 at un ~for n.1) leads to the full determination ofg.
Then a proper choice of the constantc ensures thatf (1)
50.

In Fig. 1, g(x) @equal to f (x) for b50# is shown for
different values ofc. For the optimal choice forc, it co-
incides perfectly with the distribution obtained by direct
iterating Eq. ~13!. In Fig. 2, g(x)5xb f (x) is shown for
b521

2 ~weak disorder! andb51
2 ~strong disorder!. The small

x behavior forf is confirmed, and the distributions are aga
in perfect agreement with the numerical integration
Eq. ~21!.

C. Lifshitz tail at the edge of the spectrum

Note that all these distributions seem to vanish well b
fore xmax51. We will show below that this is not the cas
and that this apparent behavior can be accounted by the
that

f ~12«!;«24/« when «˜0. ~24!

We shall see in Sec. III E that the apparent multifractal pro
erties of thexi ’s observed in Ref.@9# are partly due to this
phenomenon.



ou
he

-

l

rso

PRE 60 1467ANALYTICAL RESULTS FOR RANDOM WALKS IN THE . . .
Let us give a qualitative justification of Eq.~24!. Taking
x512«, and expecting a very fast decay ofg at x51, the
two most singular terms in Eq.~21! should beg9 and the
RHS. It can then be checked that theansatz g(12«)
;«2a/« is the solution of Eq.~21! ~up to subleading multi-
plicative logarithmic terms! if one takesa54.

Still, actually solving Eq.~21!, even in the limitx˜1,
remains a formidable task and the previous argument sh
be taken with care. However, we can justify rigorously t
fast decaying tail off at x51, finding a result fully compat-
ible with Eq. ~24!.

ConsiderP(«)5*12«
1 f (x) dx, the probability to havexi

.12«. In a way similar to that leading to Eq.~20!, we find

P~«!5E
12h(«)

1

dyE
„12h(«)…/2y

1/2

dq

3E
(12«)(12qy)

1/2

dp f~y!r~p!r~q!, ~25!

FIG. 1. In the caseb50 @ f (x)5g(x)#, we plot the distribution
obtained by iterating Eq.~13! 23109 times~N.S.!, and the solution
of Eq. ~21! obtained by imposingf (1)50, which leads toc
50.0678 . . . ~see text!. The two curves are indiscernable. We al
plot the normalized solution of Eq.~21! for c50.04 and 0.10.

FIG. 2. We plotg(x)5xb f (x) for b52
1
2, 0, and 1

2. In each
case, the distribution is obtained by iterating the map of Eq.~13!
23109. The agreement with the numerical solution of Eq.~21! is

perfect.
ld

whereh(«)5«/(12«). For small«, we expectP(«) to be
very small asp andq are to be taken close to12 and, simul-
taneously,y must be close to 1@see Eq.~13!#. In the vicinity
of (p,q)5 1

2 , the distributionr is smooth and roughly con
stant@see Eq.~3!#. We thus obtain

P~«!;4~12b!2E
12h(«)

1

dyE
„12h(«)…/2y

1/2

dq

3E
(12«)(12qy)

1/2

dp f~y!, ~26!

;
~12b!2

2 E
12h(«)

1

dy f~y!@12y2h~«!#2.

~27!

From now on, we use the symbol; in its true mathematica
sense, such thata(«);b(«) means thata(«)/b(«)˜1,
when«˜0. For sufficiently small«, this leads to the uppe
bound

P~«!<a1E
12h(«)

1

dy f~y!@12y2h~«!#2, ~28!

valid for any constanta1.(12b)2/2. We then obtain

P~«!<a1E
12h(«)

12«

dy f~y!@«2h~«!#2

1a1E
12«

1

dy f~y!h~«!2, ~29!

where we have used the fact that

@12y2h~«!#2<@«2h~«!#2;«4

for yP@12h~«!,12«#, ~30!

@12y2h~«!#2<h~«!2;«2 for yP@12«,1#. ~31!

Thus there exist two constantsa1 anda2, such that

P~«!<a1«4P„h~«!…1a2«2P~«!. ~32!

Finally, this last inequality shows that for« sufficiently
small, there exists a constantA1.0 such that

P~«!<A1«4P„h~«!…. ~33!

On the other hand, using again Eq.~27! and choosing a suf-
ficiently smalld to be determined below, we have

P~«!>
~12b!2

2 E
12h(«)(11d)

1

dy f~y!@12y2h~«!#2,

~34!

>A2P„h~«!~11d!…«2d2, ~35!

again valid for any constantA2,(12b)2/2, for small
enough«. In the following, we taked5«a, and will fix the
constraint ona later.
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Let us now start from a small enough« such that the
inequalities in Eqs.~33! and ~35! hold. Taking«0

15«0
25«,

we then define«n
1 and«n

2 by the recursion relations

«n
15h~«n11

1 !5
«n11

1

12«n11
1

, «n
25«n11

2
11~«n11

2 !a

12«n11
2

.

~36!

Both sequences go to«50. These recursion relations ca
also be rewritten

1

«n11
1

2
1

«n
1

51, ~37!

1

«n11
2

2
1

«n
2

511O~«n11
2 (a21)!. ~38!

Thus, for anya.1, both sequences are equivalent ton21

~by applying Cesaro’s mean theorem!:

«n
1;«n

2;
1

n
. ~39!

Then, by iterating the recursion relations of Eqs.~33! and
~35!, we obtain

ln„P~«n
1!…<4(

k50

n21

ln~«n
1!1n ln~A1!1 ln„P~«!…

;24n ln~n!, ~40!

ln„P~«n
2!…>2~11a! (

k50

n21

ln~«n
2!1n ln~A2!1 ln„P~«!…

;22~11a!n ln~n!. ~41!

Finally, using Eqs.~37! and ~38! and the fact thatP(«) is a
continuous and increasing function of«, and sincea can be
arbitrary close to 1, we obtain that for any arbitrary sm
h.0, there exists«̂.0, such that for any 0,«, «̂,

2
4~12h!

«
ln~«!<2 ln„P~«!…<2

4~11h!

«
ln~«!,

~42!

which leads to our final result,

2 ln„P~«!…;2 ln„f ~12«!…;2
4

«
ln~«! when «˜0,

~43!

which is a more precise and rigorous statement than tha
Eq. ~24!. It can also be shown that the subleading terms
Eq. ~43! area priori of order ln„ln(1/«)…/«. In practice, these
strong subleading corrections and the very fast decay of
distribution nearx51 make the quantitative numerical co
firmation of Eq.~43! quite difficult.
l

of
n

e

D. Escape probability distribution: symmetric case

In this section we are interested in the symmetric vers
of our model for whichqi5pi 21. The approach is slightly
different from that of the previous case, but is definitively
the same spirit. As a consequence, less attention will be
to rigorous arguments, although they can be adapted with
any difficulty to this problem.

The map now becomes

xi5
pi

12pi 21xi 21
, ~44!

which shows that the novel variableyi5pixi satisfies the
recursion

yi5
pi

2

12yi 21
. ~45!

u5p2 has a distributions(u) satisfying

s~u!5E
0

1/2

dw r~w!d~u2w2!

522b~12b!u2(11b)/2u~u!u~1/42u!. ~46!

Using Eq.~45!, we find thaty is always in@0,1
2 #, and that for

yP@0,1
4 #, the probability distributionF(y) of y satisfies

F~y!522b~12b!y2(11b)/2E
0

1/2

F~y8!~12y8!(12b)/2 dy8,

~47!

which is a pure power-law behavior. Fory. 1
4 , and proceed-

ing along the same line as in the nonsymmetric case, we
that F(y) satisfies the following nonlocal differential equa
tion:

F8~y!1
11b

2y
F~y!5

12b

8y3
FS 12

1

4yD . ~48!

Again, the knowledge ofF(y) on the interval@0,1
4 # permits

the determination of the distribution on the next interv

@ 1
4 , 1

3 # and by recursion on each of the intervals of the fo
@un ,un11#, with un5n/2(n11).

Now, let us analyze the behavior ofP(«)
5*1/22«

1/2 F(y) dy, for small «. Defining h(«)5«/(122«),
we easily find that there exist two constantsc andC ~which
can be actually determined! such that

P~«!;cE
0

h(«)

„h~«!2z…F~1/22z! dz;C«2P„h~«!….

~49!

The last estimate is obtained using the same types of
equalities as in the nonsymmetric case. Again defini
«n115«n /(112«n), and using the fact that«n;(2n)21, we
find that

ln„P~«n!…;2(
k51

n

ln~«k!;
ln~«n!

«n
, ~50!
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which finally shows that

ln„P~«!…; ln„F~1/22«!…;
ln~«!

«
. ~51!

From the knowledge of the properties ofF(y), we have ac-
cess to that off (x), the stationary distribution of thexi ’s,
using the relation

f ~x!5E
0

1/2

dpE
0

1/2

dy r~p!F~y!dS x2
p

12yD . ~52!

Let us exhibit the main properties off, which will be com-
pletely similar to those obtained in the nonsymmetric vers
of the model. ForxP@0,1/2#, Eq.~52! leads to

f ~x!5212b~12b!x2bE
0

1/2

F~y!~12y!12b dy, ~53!

which shows thatf (x) is simply proportional tox2b as in

the nonsymmetric case. ForxP@ 1
2 ,1#, we obtain

g8~x!5„xb f ~x!…85
12b

2x32b
FS 12

1

2xD . ~54!

Using Eq.~51!, we finally conclude that

ln„f ~12«!…; lnXFS 12
1

2~12«! D C;2

«
ln~«!, ~55!

which is a similar behavior to that found in the nonsymm
ric case@see Eq.~43!# up to the factor 4 which is replaced b
a factor 2. The physical interpretation of this smaller coe
cient is quite clear: in the nonsymmetric case, forxi to be
close to 1, one must havexi 21 , pi , and qi close to their
maximal value. In the symmetric case, forxi to be close to 1,
only xi 21 and pi must be close to their maximal value, a
qi5pi 21 is automatically close to 1/2 asxi 21 is close to 1.
This extra constraint explains whyf (x) decays faster in the
nonsymmetric case than in the symmetric case, which is c
firmed numerically in Fig. 3. Note that the nonsymmet

FIG. 3. We plotg(x)5xb f (x), for b5
1
2 , and after 23109 it-

erations of the symmetric and nonsymmetric maps. As explaine
the text, the distribution decays faster in the nonsymmetric cas
n

-

-

n-

case could have been treated by the same techniques
this subsection by replacing the distributions of pi

2 with the

distribution ŝ of piqi 11.
Finally, we can conclude that up to a few irrelevant d

tails, the symmetric and nonsymmetric models seem to sh
exactly the same properties. This is apparently surpris
since the corresponding models without trapping are dra
cally different@7#. This intriguing property is confirmed an
explained physically in Sec. IV D.

E. Explanation of the apparent multifractality

In the preceding subsections, we have obtained a puzz
numerical result~see Figs. 1–3!: although we have shown
that the maximum valuexmax51 must be attained, the nu
merical maximum value effectively obtained after 23109

iterations of the map Eq.~13! is typically of orderxmax,eff
'0.73;78, for the three values ofb actually tested in the
nonsymmetric case. This apparent paradox can be expla
by the sharp decay of the distributionf (x). xmax,eff can be
estimated by considering that afterN iterations of the map,

E
xmax,eff

1

f ~x! dx;N21, ~56!

which is the smallest nonzero value that this integral can t
~the integrated distribution increasing by elementary step
height N21). Using Eq. ~43!, we find that «512xmax,eff
must satisfy

2
ln~«!

«
;

1

4
ln~N!. ~57!

If we now take N523109, the above estimate give
xmax,eff'0.75, in fair agreement with the observed range
numerical effective values forxmax.

In the limit of very largeN, Eq. ~43! also leads to the
leading order estimate

12xmax,eff'
4 ln„ln~N!…

ln~N!
, ~58!

which goes to zero very slowly.
In Ref. @9#, the fact thatxmax51 was not recognized. The

authors actually computed the multifractal distribution of t
xi ’s in the interval@0,xmax,eff#. This interval was cut inton
equal length intervals, andr j was defined as the fraction o
the total number of thexi ’s that belongs to thej th interval.
One then defines@13#

Z~q,n!5(
i 51

n

r i
q;n2t(q), ~59!

the last equivalent defining the scaling exponentt(q) asso-
ciated with theqth moment. Let us first derive the exa
expression oft(q) for a given choice ofb.0 ~strong disor-
der!, and taking the actual value ofxmax51. For 0<q
,1/b, the functionf (x)q is integrable, so that

in
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Z~q,n!5n2(q21)3
1

n (
i 51

n

~nr i !
q;n2(q21)E

0

1

f ~x!q dx.

~60!

This shows that, in this regime,t(q)5q21. Forq.1/b, the
function f (x)q is no longer integrable due to the power-la
divergence atx50:

Z~q,n!5n2(q21)3
1

n (
i 51

n

~nr i !
q;n2(q21)E

1/n

1

f ~x!q dx

;n2(12b)q. ~61!

In this regime, we thus findt(q)5(12b)q. Moreover, for
q51/b, we find

Z~q51/b,n!;n2(1/b21)E
1/n

1

f ~x!1/b dx;n2(1/b21)ln~n!,

~62!

which shows that in the regionq'1/b, the numerical deter-
mination of t(q) will be strongly affected by a logarithmic
slow crossover. Finally, strictly speaking,t(q) is not defined
for negativeq, due to the essential singularity atxmax51.
But if one computes the multifractal scaling exponents
restraining the study on the interval@0,xmax,eff# ~as in Ref.
@9#!, we then recovert(q)5q21, for negative values ofq as
well.

The two linear regimes fort(q) are clearly visible in Fig.
4 of Ref. @9#, with the predicted slopes and transition po
q51/b. Of course, numerically, the change in slope@from
t8(q)51 to t8(q)512b] is found to be smooth, partly du
to the logarithmic correction aroundq51/b. Then, the spec-
trum of singularities defined as the Legendre transform
t(q) @13#,

s~a!5aq2t~q!, a5t8~q! ~63!

apparently yields a nontrivial spectrum, whereas the ac
one is concentrated on two points:a51, with a support of
fractal dimensions(1)51, reflecting that for almost all val
ues ofx the distributionf (x) is actually continuous, anda
512b, with a support of fractal dimensions(12b)50,
which simply results from thex50 singularity of the distri-
bution f (x).

The moral that we can draw from this is that one must
very careful when dealing with multifractal analysis, esp
cially if there is no special reason to expect a multifrac
spectrum. Similar problems were encountered by the au
of Ref. @14#, who obtained an apparent multifractal spectru
in a model which can actually be solved exactly@15#, and for
which it can be shown that the true multifractal spectrum
of the same type as above. Similar doubts can be raise
the findings of multifractal spectra in certain biological sy
tems or in the field of finance@16#, where simple power-law
distributions can lead to such apparent behaviors.
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IV. LARGE TIME BEHAVIOR OF THE SURVIVAL
RETURN PROBABILITY

A. General results

Following the tracks of Ref.@10#, let us evaluate the sur
vival return, or more exactly, its discrete time Laplace tra
form. We consider the symmetric model but the nonsymm
ric case can be treated in the same spirit, leading to exa
the same results.

Thus consider

p̂0,i~v!5(
t50

1`
p0,i~ t !

~11v! t11
. ~64!

It can be shown@10# that p̂0,i(v) satisfies the equation@see
Eq. ~7!#

p̂0,i~v!5wi 21,i p̂0,i 21~v!1wi ,i 11p̂0,i 11~v!1~11v!21d i ,0 .
~65!

Then, the variablesf i
1(v) and f i

2(v), defined, respec-
tively, for i .0 andi ,0 by

f i
1~v!5

wi 21,i

11v
•

p̂0,i~v!

p̂0,i 21~v!
,

f i
2~v!5

wi ,i 11

11v
•

p̂0,i~v!

p̂0,i 21~v!
, ~66!

satisfy the same recursion, reminiscent of that of Eq.~13!.
For instance,

f i
1~v!5

m i 21
2

12f i 11
1 ~v!

with m i 215
wi 21,i

11v
, ~67!

with a similar equation fori ,0. It can then be shown that

^p0,0~v!&5E
0

fmax(v)

df1

3E
0

fmax(v)

df2 Pv~f1!Pv~f2!

3
u~12f12f2!

12f12f2
, ~68!

wherePv(f), is the expected stationary distribution off1

andf2.
From now on, we follow the method of Sec. III to evalu

ate the behavior of the distributionPv(f) close to f
5fmax, and for smallv @as we are mainly interested in th
large time behavior ofPs(t)]. From Eq.~67!, fmax(v) can
be easily calculated:

fmax~v!5
1

2
„12A12~11v!22

…5
1

2
2Av

2
1O~v3/2!.

~69!

Moreover, using again Eq.~67!, we find thatPv(f) satisfies
the following self-consistent equation:
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Pv~f!5E
0

1/4

dxE
0

fmax(v)

df8 s~x!Pv~f8!d

3S f2
x

~11v!2~12f8!
D , ~70!

where the distributions(x) of x5m2(11v)2 is given by
Eq. ~46!.

Equation ~67! can be first solved forf,1/4(11v)2,
leading to a pure power-law behavior~as encountered in Sec
III !:

Pv~f!522b~12b!~11v!2(11b)f2(11b)/2

3E
0

fmax(v)

df8
Pv~f!

~12f8!(11b)/2
. ~71!

For f.1/4(11v)2, one can differentiate Eq.~70! „noticing
that f8P†12@1/4(11v)2f#‡), which leads to the follow-
ing differential equation forPv(f):

@f (11b)/2Pv~f!#852
12b

2
~11v!2(51b)/2f2(32b)/2Pv

3S 12
1

4~11v!2f
D . ~72!

The leading asymptotics ofPv(f) close tof5fmax(v) can
be calculated rigorously, adapting the method of Sec. II
Here we first derive this result by a less rigorous meth
already mentioned in Sec. III A, consisting of keeping on
the most singular terms in the differential equation~72!,
leading to

Pv8 ~f!;APvS 12
1

4~11v!2f
D

;APvS fmax~v!2
12fmax~v!

fmax~v!
« D , ~73!

whereA is a computable positive constant, and the expl
equation forfmax(v) was used. One can try an ansatz fo
for Pv(f), which satisfies this equation up to multiplicativ
logarithmic terms. We find

ln@Pv„fmax~v!2«…#;2
ln2~«!

2ln~r !
with r 5

12fmax~v!

fmax~v!
.

~74!

B. Tail of the distribution

In fact, this complicated ansatz was originally foun
by applying a method similar to that of Sec. III C, whic
.
d

it

we present now. Again, let us definePv(«)
5*fmax(v)2«

fmax(v)
Pv(f) df, which satisfies

Pv~«!5E
0

1/4

dxE
0

fmax(v)

d f s~x!Pv~f!u

3S x

~11v!2~12f!
1«2fmax~v!D . ~75!

Once we express the actual domain of integration by imp
ing that the argument of theu function be positive, we find
that the variablex remains very close to14, where the distri-
bution s(x) is essentially constant. Exploiting this fact, w
find after a few elementary manipulations that

Pv~«!;CE
0

r«

Pv~u! du, ~76!

with r 5@12fmax(v)/fmax(v)#.1, and C5s(1/4)/
4rfmax(v). This equation is a rigorous integrated version
Eq. ~73!. Note that, for smallv, we have

r 5112A2v1O~v3/2!. ~77!

We can now proceed in the same spirit as we did in S
III C, and find exact inequalities forPv(«). For anyc1.C,
and sufficiently small«

Pv~«!<c1E
«

r«

Pv~u! du1c1E
0

«

Pv~u! du, ~78!

<c1~r 21!«Pv~r«!1c1«Pv~«!, ~79!

which finally leads, for small enough«, to the existence of a
constantC1 of orderO(1), such that

Pv~«!<C1~r 21!«Pv~r«!. ~80!

On the other hand, for anyr 8,1 close to 1, to be specified
later, we can write that

Pv~«!>C2E
r 8r«

r«

Pv~u! du, ~81!

>C2~12r 8!«Pv~r 8r«!. ~82!

Let us now start from a small enough«05« such that the
inequalities of Eqs.~80! and ~82! hold, and define

«n
15r 21«n21

1 5r 2n«, ~83!

«n
25~r 8r !21«n21

2 5~r 8r !2n«. ~84!

In the following, we will chooser 8 such thatr 8r .1, so that
«n

2
˜0, whenn˜1`.
By iterating the recursion inequalities we obtain

2 ln„Pv~«n
1!…>2n ln„C1~r 21!…2 (

k50

n21

ln~«k
1!

2 ln„Pv~«!…, ~85!

;2n ln„C1~r 21!…1
n2

2
ln~r !, ~86!
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where, after usingn;2 ln(«n
1)/ln(r), the last line can also be

written

ln2~«n
1!

2 ln~r !
1

ln„C1~r 21!…

ln~r !
ln~«n

1!. ~87!

Similarly,

2 ln„Pv~«n
2!…<2n ln„C2~12r 8!…2 (

k50

n21

ln~«k
2!

2 ln„Pv~«!…, ~88!

;2n ln„C2~12r 8!…1
n2

2
ln~r 8r !, ~89!

where the last line can also be written under the form

ln2~«n
2!

2 ln~r 8r !
1

ln„C2~12r 8!…

ln~r 8r !
ln~«n

2!. ~90!

Sincer 8 can be arbitrarily close to 1, we thus find that t
leading order of Eq.~74! is exactly recovered.

Now, we restrict ourselves to the case of smallv, and
analyze the effect of the subleading term. To be specific
us take 12r 85v1/21d, with d arbitrarily small, such that the
condition r 8r .1 remains satisfied@see Eq.~77!#. Our final
results are thatPv

2(«)<Pv(«)<Pv
1(«), with

2 ln„Pv
1~«!…;

ln2~«!

4A2v
1

ln~v!

4A2v
ln~«!, ~91!

2 ln„Pv
2~«!…;

ln2~«!

4A2v
1~112d!

ln~v!

4A2v
ln~«!, ~92!

which strongly suggests that

2 ln@Pv„fmax~v!2«…#;2 ln„Pv~«!…;
ln~«!ln~v«!

4A2v
.

~93!

Note that the casev50 falls exactly in the class of prob
lem studied in Sec. III C, leading to the exact asymptot
@with fmax(0)5 1

2 ]

ln„Pv50~1/22«!…; ln„Pv50~«!…;
ln~«!

«
. ~94!

C. Survival return probability

The results of this section will not rely on mathematic
grounds as firm as that of the preceding sections, but
appear to be quite reasonable. Comparison of Eqs.~93! and
~94! suggests that the asymptotics of Eq.~93! should be cor-
rect at least up to« of order Av;1/22fmax(v) @or more
exactly Av/u ln(v)u]. Using Eq. ~68!, we find that there
should be a singular contribution in̂p0,0(v)& of order @see
Eq. ~93!#
et

s

l
ill

@^p0,0~0!&2^p0,0~v!&#sing;E
fmax(v)

1/2

Pv50~x! dx

;expS c1ln~v!

Av
D , ~95!

where the last estimate comes from Eq.~94!. In principle, the
leading singular correction to Eq.~95! should come from the
contribution ofPv to the integral of Eq.~68! on the interval
@0,fmax# and should be of order exp@2c2ln

2(v)/Av#.
A contribution of the form exp(2culn(v)ua8/va) in a

Laplace transform generally originates from a large time
cay of the form~as found by a steepest descent type of
gument!

exp„2Cta/(11a)lna8/(11a)~ t !…. ~96!

If we take the logarithmic corrections in Eq.~95! seriously,
we thus find

^p0,0~ t !&;exp„2Ct1/3ln2/3~ t !…, ~97!

in disagreement with the heuristic argument given in R
@10# @see Eq.~6!#.

D. Exact bound for the survival return probability

In this subsection, we give an exact lower bound for t
number of surviving particles using an argument which c
be easily generalized to obtain a similar bound for^p0,0(t)&.
The resulting bound is fully consistent with Eq.~97!, and
contradicts the heuristic estimate of Ref.@10# @see Eq.~6!#.

Consider the symmetric model (wi ,i 115wi 11,i). The
probability of having a region ofL sites on which all
w1,2, . . . ,wL22,L21.1/22« is

PL~«!5@12~122«!12b#L22;@2~12b!«#L. ~98!

If we were interested in the nonsymmetric model, the c
responding probability of having w1,2,w2,1 . . . ,
wL22,L21 ,wL21,L22.1/22« would be simply

PL~«!5@12~122«!12b#2(L22);@2~12b!«#2L, ~99!

and the rest of the argument would be essentially identi
On such a region, the density cannot decay faster than th
the following problem where we considerw1,2, . . . ,wL21,L
51/22«, with fully absorbing boundary conditions (w0,1
5w1,05wL21,L5wL,L2150). This simple property can be
shown by induction using the master equation forpi(t), the
density at sitei:

pi~ t11!5wi 11,i pi 11~ t !1wi 21,i pi 21~ t !, pi~ t50!51.
~100!

This simpler problem can be solved exactly~on the lattice or
in the continuum!, leading to the following bound for the
average decay of the total density:

nL~ t !.
8

p2
expS 2

p2t

2L2
22«t D . ~101!

Finally, we find that the total densityn(t) is bounded for any
L and« by the exact lower bound
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n~ t !.C0expS 2
p2t

2L2
22«t1L ln„2~12b!«…D , ~102!

whereC0 is a positive constant. We can now take the ma
mum of this lower bound overL and«. Expressing this con-
dition, we obtain the following optimal values forL and «
defined implicitly by

L52«t5F2
p2t

ln„2~12b!«…G
1/3

;F 3p2t

2 ln~ t !G
1/3

, ~103!

where the last estimate is valid for large time.
Finally, we have shown that

n~ t !.exp2S~ t ! with S~ t !;F3p2t

2 G1/3

ln2/3~ t !, ~104!

in perfect agreement with the above analytical argument.
physical interpretation of this result is that surviving partic
are living in large regions where thewi ,i 61 are very close to
1
2, and annihilates with a large probability outside these
gions. This explains why the symmetry of the hopping pro
abilities is irrelevant, and why the result is essentially simi
to that of perfectly diffusing particles with randomly distrib
uted perfect traps. The ln2/3(t) corrections are due to the fac
that for large time,wi ,i 61 in regions where the surviving
particles stand must be closer and closer to1

2, with an al-
lowed fluctuation decreasing as«;t22/3. Moreover, within
these large regions there is an extra probability of leaking
site of order«. Note, finally, that if 0,g,1, the argument
can be repeated with«t replaced by (12g)«t in Eq. ~101!,
leading to the same decaying behavior.

Let us now exhibit the flaw~s! in the argument given in
Ref. @10#, leading to Eq.~6!. On a large region of sizeL with
wi ,i 61.1/22«, the authors of Ref.@10# estimated the prob
ability decay as

nL~ t !;expS 2
t

L1/n
2«L1/nD , ~105!

wheren is the effective diffusion exponent defined in Eq.~5!
and below. This estimate is to be compared to our Eq.~101!.
The first term is supposed to represent the probability de
due to the absorption of particles at the boundaries of
considered region. It is not correct to consider that partic
in this region display anomalous diffusion, aswi ,i 61 are in
fact very close to1

2. This fact is confirmed by the exac
bound, Eq.~101!. The second term in the exponential is su
posed to reflect the fact that there is a small trapping pr
ability ~of order«) on each site of the considered region. T
authors of Ref.@10# assumed that time can be replaced
L1/n. This is obviously wrong, as the decay due to this sm
trapping probability explicitly depends on the time spent
-

e

-
-
r

er

y
e
s

-
-

ll

the region but not on its size. Finally, the authors did n
realize that in the final expression that they obtained,« ~and
not onlyL) should also be treated as a variational parame

Note that for intermediate times, we expect that the d
sity should decay as

n~ t !;exp„2cN~ t !…;exp~2Ct1/2!, ~106!

whereN(t) is the number of different sites visited by a ra
dom walker. This phenomenon is also well known for t
Donsker-Varadhan problem, for which this behavior can
tually dominate the numerically accessible time regime@4,3#.

Finally, the generalization to higher dimensions of th
model is straightforward. On a periodic lattice of coordin
tion numberz, the hopping probabilities are bounded byz21,
and particles disappear if they do not move. The above
gument suggests that

n~ t !;exp„2Ctd/(d12)ln2/(d12)~ t !…. ~107!

V. CONCLUSION

In this paper, we have considered a model where the t
ping probabilities are strongly correlated with the hoppi
probabilities of the walker. We have shown that the esc
probabilities have a well defined distribution which has be
analyzed in great detail in Sec. III. We have also explain
why this quantity displays an apparent multifractal distrib
tion. In Sec. IV, we generalized our approach to the study
the survival return probability distribution. We deduced fro
this exact analysis that this survival probability~and the den-
sity! decays as exp„2Ct1/3ln2/3(t)…. To support this result,
we have obtained an exact bound for the density which e
reproduces the correct power of the logarithmic correcti
Moreover, we have explained the independence of the mo
properties with respect to the disorder strengthb, the trap-
ping rateg.0 and, more surprisingly, the symmetry of th
hopping probabilities.

A challenging problem is the understanding of the diff
sion properties in this model. The fact that the effecti
spreading of the survivors is apparently faster than diffus
@see Eq.~5!# remains to be explained.

Note added: After this paper was released on cond-m
the authors of Refs.@9,10# mentioned to me that they ha
later realized that multifractality of the first return probabi
ties was dubious and that their heuristic argument forn(t)
was wrong, as they claimed to have also found the cor
one presented here~unpublished!.
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